云腾致雨

云腾致雨,露结为霜

题目链接

思路

求最大流,运用Dinic算法,先求分层图,然后用多次DFS求出增广路,把每次增广路的中的最小值相加即为最大流。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#include <iostream>
#include <algorithm>
#include <string>
#include <cstring>
#include <queue>
using namespace std;
const int maxn = 10005;
const int inf = 0x3f3f3f3f;
typedef long long ll;
int head[maxn];
struct edge
{
int v,w,next;
} edge[10005];
bool vis[10005];
int tot;
int deep[maxn];
int bfs(int s, int t)
{
queue<int>Q;
memset(deep, 0, sizeof(deep));
deep[s] = 1;
Q.push(s);
while(!Q.empty())
{
int u = Q.front();
Q.pop();
for(int k = head[u]; k != -1; k = edge[k].next)
{

int v = edge[k].v;
int w = edge[k].w;
if(deep[v] == 0 && w > 0)
{
deep[v] = deep[u] + 1;
Q.push(v);
}
}
}
if(deep[t] == 0)
return 0;
return 1;
}
void add(int u,int v, int w)
{
edge[tot].v = v;
edge[tot].w = w;
edge[tot].next = head[u];
head[u] = tot;
tot++;
}
int t;
int dfs(int s, int dis)
{
if(s == t)
return dis;
for(int k = head[s]; k != -1; k = edge[k].next)
{
int v = edge[k].v;
int w = edge[k].w;
if(deep[v] == deep[s] + 1 && w > 0)
{
int d = dfs(v,min(w, dis));
if(d > 0)
{
edge[k].w -= d;
edge[k^1].w += d;
return d;
}
}
}
return 0;
}
int main()
{
int n, m,u,v,w;
while(cin >> m >> n)
{
tot = 0;
t = n;
memset(head, -1, sizeof(head));
for(int i = 1; i <= m; ++i)
{
scanf("%d %d %d",&u,&v,&w);
add(u,v,w);
add(v,u,0);
}
ll sum = 0;
while(bfs(1,n))
{
while(int d = dfs(1, inf))
sum += d;
}
cout << sum << '\n';
}
}

题目链接

题意

给你一个序列 ,(2,r,k)代表查询从第1个数到第r个数中>= k且在这个序列中不存的数字。(1,pos)代表修改a[pos]。

思路

这个题强制在线,比赛时想用带修改莫队,发现在线后放弃了。其实这个题是查询某一段序列中大于某个数字的一个算法,我们就想应该联想到权值线段树,但是每个节点存的是这段区间中的最大下标,这样题目就转换成为了求下标大于r且这个值>= k的最小权值。初始化我们应该把每个区间的下标都最大化(比如说一开始就询问整段区间的情况)。修改操作的话我们就把那段区间的存的最大下标最大化,就代表这个区间本身的值已经不在这段区间内了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <cstring>
using namespace std;
typedef long long ll ;
const int maxn = 100005;
struct node{
int sum;
}tr[maxn << 2];

int a[maxn];
void build(int node, int l, int r)
{
tr[node].sum = 100005;
if(l == r) return;
int mid = (l + r) >> 1;
build(node << 1, l, mid);
build(node << 1|1, mid + 1, r);
}

void update(int node, int l, int r, int pos, int value)
{
if(l == r && l == pos)
{
tr[node].sum = value;
return;
}
int mid = (l + r)>> 1;
if(pos <= mid) update(node << 1, l, mid, pos , value);
else update(node << 1|1, mid + 1, r, pos, value);
tr[node].sum = max(tr[node << 1].sum, tr[node << 1|1].sum);
}

int ans;
void query(int node, int l, int r, int pos, int value)
{
if(ans != -1) return;
if(l == r)
{
if(tr[node].sum > value)
{
ans = l;
}
return;
}
int mid = (l + r) >> 1;
if(mid >= pos && tr[node << 1].sum > value) query(node <<1, l, mid, pos, value);
if(tr[node << 1|1].sum > value) query(node << 1|1, mid + 1, r, pos, value);
}
int main()
{
int T,n,q,A,b,c;
cin >> T;
while(T--)
{
scanf("%d %d",&n,&q);
build(1,1,100001);
for(int i = 1; i <= n; ++i)
{
scanf("%d",&a[i]);
update(1,1,100001,a[i], i);
}
int lastans = 0;
while(q--)
{
scanf("%d %d",&A,&b);
if(A == 1)
{
b ^= lastans;
update(1,1,100001, a[b],100005);
}
else{
scanf("%d",&c);
b ^= lastans;
c ^= lastans;
ans = -1;
query(1,1,100001,c,b);
cout << ans << '\n';
lastans = ans;
}
}
}
}

0%